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Role of Invariant Manifolds in Low-Thrust Trajectory Design
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This paper demonstrates the significant role that invariant manifolds play in the dynamics of low-thrust
trajectories moving through unstable regions in the three-body problem. It shows that an optimization algorithm
incorporating no knowledge of invariant manifolds converges on low-thrust trajectories that use the invariant
manifolds of unstable resonant orbits to traverse resonances. It is determined that the algorithm could both change
the energy through thrusting to a level where the invariant manifolds could more easily be used, as well as use
thrusting to move the trajectory along the invariant manifolds. Knowledge of this relationship has the potential to be
very useful in developing initial guesses and new control laws for these optimization algorithms. In particular, this
approach can speed up the convergence of the optimization process, retain the essential geometric and topological
characteristics of the initial design, and provide a more accurate estimate of the A V and fuel usage based on the initial

trajectory.

Introduction

HE use of low thrust in trajectory design can significantly
increase the complexity of the design process, because many of
the standard astrodynamics tools are no longer applicable without
what are sometimes significant modifications. For modeling
performed in the two-body problem, the use of low thrust increases
the difficulty of design in that the resulting trajectory no longer
follows conic sections. In the three-body problem, the energy, or the
Jacobi constant, changes because of the continuous thrust. As aresult
of these difficulties, much of the design work for low-thrust missions
is performed using optimization tools which do not necessarily
incorporate a full knowledge of the dynamics of the problem in the
search for a desired trajectory. It has been observed, however, that the
solutions developed using the Mystic optimization software [1-3]
appear to generally follow the same types of paths as the invariant
manifolds of unstable periodic orbits in the three-body problem [4].
This suggests that a knowledge of the relationship of these optimized
trajectories to the invariant manifolds of unstable orbits could prove
to be useful in the design of low-thrust trajectories. The long periods
of time often required to run the optimization software could be
significantly reduced if a good initial guess could be developed using
the dynamics of the problem based on the invariant manifolds of the
relevant unstable orbits. In this paper, we demonstrate how invariant
manifolds play a central role in optimized low-thrust trajectories.
This paper arose from a study to understand optimized low-
thrust trajectories for multimoon tours from a dynamical systems
perspective. It specifically concentrates on the relationship of
optimized low-thrust trajectories to the invariant manifolds of
resonant orbits. The results given in this paper summarize the low-
thrust results originally presented in a series of papers from 2004 to
2006 [5-7]. A more detailed version of these results may be found in
Anderson’s dissertation (2005) [8]. Our stated goals in this work have
been to demonstrate that invariant manifolds do indeed play a role in
low-thrust trajectories and to explain how the dynamics of low-thrust
interplanetary trajectories interact with invariant manifolds. Lo et al.
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[5] compared low-thrust trajectories to the invariant manifolds of
nearby unstable orbits at a single energy level. The outcome of this
work suggests heuristically that we are on the right track, but,
because low-thrust trajectories are constantly changing their Jacobi
energy while thrusting, one must study a continuum of invariant
manifolds in the energy range of the low-thrust trajectory. To do this,
we must first understand the role of resonant orbits in planetary
flybys and whether invariant manifolds play a role or not. For these
reasons, in Anderson and Lo [6], we analyzed the planar Europa
Orbiter (PEO) trajectory and found that it indeed follows the stable
and unstable manifolds of the resonant orbits between impulsive
maneuvers. In particular, it was found that the locations where the
manifolds intersect in configuration space but not in phase space are
the locations where a maneuver is required for moving from one
manifold to another. This result suggests that a deeper understanding
of the geometry of the invariant manifolds of resonant orbits is critical
to understanding planetary flybys, and we anticipate this to also be
true for low-thrust trajectories when they are moving through
resonant orbit regions. These conjectures were found to be true, and
the close relationship between low-thrust trajectories and the
invariant manifolds of unstable resonant orbits was shown in Lo et al.
[7]. Since that time, subsequent research has been performed by
several groups building on the optimization techniques developed by
Lawden [9], Betts and Erb [10], and Betts [11]. In addition to this
work, several of these researchers have begun to focus on
optimization within a multibody environment, particularly with
regard to using libration point orbits. Whiffen and Lam have
continued to develop and apply the Mystic software to missions
such as the Jupiter Icy Moons Orbiter [12] and the Dawn mission.
Howell’s group has applied optimization techniques to trajectories
with gravity flybys and looked at low-thrust trajectories transferring
to libration point orbits in the Earth—-moon system [13,14]. Dellnitz
et al. used the concept of reachable sets in combination with the
invariant manifolds of libration orbits to look at a low-thrust transfer
from Earth to Venus [15].

Studying low-thrust trajectories in this type of environment
continues to be a vibrant area of research, and this fact emphasizes
the importance of continuing to explore these trajectories in a three-
body environment. The role of resonance transition that our papers
have focused on continues to be important for understanding
trajectories within the context of this problem. In this paper, we
examine and summarize the relationship between a low-thrust
trajectory and the invariant manifolds of several families of resonant
orbits through the energy levels traversed by the low-thrust
trajectory.
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Models and Tools
Circular Restricted Three-Body Problem

The circular restricted three-body problem (CRTBP) was the
primary model used in this study. In this model, two bodies, typically
referred to collectively as the primaries, are assumed to rotate about
their center of mass in circular orbits, and the objective is to describe
the motion of a third infinitesimal mass placed in this system. This
infinitesimal mass could represent a spacecraft, asteroid, comet, or
dust particle. If the infinitesimal mass is restricted to the plane of
motion of the two primaries, the problem is called the planar CRTBP.
In formulating the equations of motion for the infinitesimal mass, the
required quantities are usually normalized and nondimensionalized
so that the mass of the smaller body (the primary) is x, and the larger
body (the secondary) has mass 1 — . The distance between the two
bodies becomes one with the primary located on a rotating x axis at
x; = —p and the secondary at x, = 1 — w. The dimensionless time
corresponds to the angle between the x axis of the rotating frame
(defined so that the x axis always passes through the two bodies) and
the x axis of the inertial frame. The period of the rotating system
becomes 2. Both the mean motion and the gravitational constant are
one. Using this notation, the equations of motion for the infinitesimal
mass in the rotating system may be written as
X — Xy
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Here, the distances from the infinitesimal mass to the primary and
secondary are r; and r,, respectively. The x axis location of the
primary is x; and that of the secondary is x,. An energylike integral of
motion called the Jacobi constant exists in this model, which varies
when maneuvers are performed. It may be computed as
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Finally, there are five equilibrium points in the problem (the

Lagrange points) about which periodic orbits exist. See Szebehely
[16] or Roy [17] for detailed descriptions of the CRTBP.

Poincaré Maps

Poincaré maps are useful for studying complicated systems
because they bring outinformation that would otherwise be obscured.
To compute a Poincaré map fora systemin R”, a “hypersurface” X, or
surface of section in R"~! is placed transverse to the flow, as shown in
Fig. 1. A trajectory intersecting the surface of section is integrated
until it intersects the surface of section once again. The mapping is
from the firstintersection to the nextintersection and so on. The points
of the mapping may then be plotted using a number of different
coordinates, although only some coordinates will result in visible
structure. Given the planar CRTBP in R, the surface of section is
specified by fixing one of the coordinates to produce a surface in R3.
For example, given a particular case where the surface of section is
defined so that y is always zero, the coordinates x and x are quite
commonly used. These Poincaré surface of sections or Poincaré
sections bring out a surprising amount of detail, which allows the
location of stable periodic and quasi-periodic orbits to be computed.

In this analysis, the surface of section is specified by y = 0 along
the x axis opposite Europa (as shown later). The Jacobi constant is
fixed for all the points in the Poincaré section, which means that the
resulting surface of section is two-dimensional. So, with x defined,
x =0 and y = 0. The magnitude of y can then be calculated in the
planar problem from the Jacobi constant as
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As mentioned previously, resonant orbits and their invariant
manifolds are of particular importance to this analysis, and their

intersections with the surface of section are computed throughout
this paper. It is also useful to compare these resonant orbits and
invariant manifolds with the typical Poincaré section showing
the stable quasi-periodic orbits and other structures at different
resonances. These background points showing the quasi-periodic
orbits and other structures were computed by starting with a set of
initial conditions in an equally spaced grid on the x axis and
integrating them forward in time. The first two intersections of each
trajectory with the x axis were discarded to allow the dynamics to
remove the effect of the grid, but the remaining intersections were
used in the Poincaré section. For this analysis, only those points
crossing the surface of section with a positive y were plotted because
only the resonant orbits crossing the y = 0 line with —x values were
of interest. Generally, the initial set of points were selected based on
approximations from the two-body equations and the desired surface
of section. Usually the initial x was set equal to zero, but X was given a
value of 0.05 when the main resonances of even order were of
interest. See Murray and Dermott for the rationale behind this
technique [18]. A Runge—Kutta Fehlberg seventh-order integrator
with stepsize control was used to generate the Poincaré sections. If
the Jacobi constant was found to vary more than approximately 1073,
it generally indicated a close approach to one of the singularities. The
integration was stopped, and the integrator proceeded on to the next
pointin the grid. This approach was favored over using regularization
to save time, and it had no negative consequences, as it was only used
to generate the background points in the Poincaré surface of sections.

Invariant Manifolds

A manifold may be most simply defined as an m-dimensional
surface embedded in R” which locally possesses the structure of R”
[19]. The term “invariant” indicates that a trajectory of a point on the
manifold will remain on the manifold as time evolves. Invariant
manifolds may be subdivided into stable and unstable manifolds.
Simply speaking, a stable manifold for a flow consists of those points
that approach a limit set L as time moves forward toward infinity,
whereas an unstable manifold consists of the points that approach the
limit set as time moves backward. A limit set for these purposes is a
periodic orbit or an equilibrium point. More formally, the stable and
unstable manifolds for a flow ¢, are as follows:

The stable manifold W*(L) is the set of points x such that ¢,(x)
approaches L as t — o0.

The unstable manifold W*(L) is the set of points x such that ¢,(x)
approaches L as t — —oo.

See Parker and Chua [20] for more details.

In calculating the stable and unstable manifolds of a libration or
resonant orbit, the fact that these orbits are periodic is used to
discretize the continuous time system and form a map. The Poincaré
maps discussed earlier, where a surface X is constructed transverse to
the flow at a particular point, are often used for this purpose. Refer
back to Fig. 1 for an example of the three-dimensional case. Using
this method, a trajectory intersects the surface at intervals of time
corresponding to approximately one period. This process reduces the
problem to a lower-dimensional problem and aids in the study of the
dynamics of the orbit. A truly periodic orbit would return to the same
point on the Poincaré map each time it intersected the surface. Such a
point is referred to as a fixed point, and its map can be examined to
understand stability. A similar concept is that of a stroboscopic map
where the flow is observed at intervals equal to the period of the orbit
[20]. In this case, the state transition matrix from the initial time ¢, to

Fig. 1 Sample Poincaré map for a three-dimensional system.
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the time after one period (¢, + T) is referred to as the monodromy
matrix and is designated by ®(¢, + T, t,). The stability character-
istics of this point on the libration trajectory may be evaluated by
examining the eigenvalues and eigenvectors of this matrix. The
algorithm for computing manifolds uses the fact that the eigenvector
corresponding to an eigenvalue greater (less) than one is in the
direction of the local unstable (stable) manifold. To compute the
manifold, an initial point corresponding to an offset of approximately
1.0 x 107® dimensionless units in the direction of the desired
eigenvector is calculated [21]. This offset may be taken either in the
direction of the calculated eigenvector or in the opposite direction.
One direction typically takes the trajectories toward the secondary
and one will usually cause them to travel in the opposite direction.
For calculation of the unstable manifold, the trajectory is then
integrated forward in time from the given point, and for the stable
manifold, the trajectory is integrated backward in time.

Visualization of the Low-Thrust Trajectory Relative
to the Invariant Manifolds

The inclusion of low thrust and the corresponding variations
in energy into the analysis introduces a number of significant
challenges in terms of visualizing the trajectory and its relationship to
the relevant dynamical structures. Ideally, a complete examination
could be achieved by comparing the trajectories to the invariant
manifolds at each energy level in phase space, but this turns out to be
a rather difficult proposition for higher-dimensional systems such as
the CRTBP.

Even in previous work where a trajectory at only one or very few
energy levels was examined, this sort of comparison was found to
be difficult to visualize [6]. In these cases, the resonant orbits
and their invariant manifolds were computed at the same Jacobi
constant as the trajectory. Then the dimension of the problem was
reduced through the use of a Poincaré section (see the Poincaré
map section). The intersections of the invariant manifolds with the
Poincaré section was computed, and the intersection of the
trajectory was plotted for visual comparison. It is worth reiterating
that this method allows for a complete comparison of the trajectory
and the invariant manifolds in the planar CRTBP, because fixing
the Jacobi constant of all points in the Poincaré section means that
points at the same location in the Poincaré section have the same
state.

One option with the addition of low thrust would be to use the
same procedure as for impulsive trajectories where the intersection of
the trajectory with the surface of section is compared to the invariant
manifolds at that energy. However, this option would ignore the other
points on the trajectory which possess different energies. One
possible way to perform the comparison, illustrated in Fig. 2, would
be to compute new Poincaré sections that intersect each individual
point on the trajectory. For each of these Poincaré sections, the
intersections of the resonant orbits and their invariant manifolds
would be recomputed at the instantaneous energy of the selected
point on the trajectory. This method, however, becomes awkward
when a comparison of the Poincaré sections is desired because the
invariant manifolds evolve in space. So the comparison is difficult
because the invariant manifolds are being compared at different
locations and at different energies.

One solution to this problem, illustrated in Fig. 3, is to use only one
Poincaré section fixed in space and map the instantaneous state of the
spacecraft back to the surface of section for each point along the
trajectory. The invariant manifolds of the resonant orbits would be
recomputed for each energy level, but, in this case, the dynamical
structures in each Poincaré section could be directly compared, with
the only difference being the energy. Note that the mapping is
achieved using integration without the inclusion of the thrusting
force. If the thrust was included in the mapping, then every point on
the trajectory would simply map back to the same single point. The
comparison of this point with the invariant manifolds computed at
the energy of the instantaneous point along the trajectory would
be invalid because the energies would be different. Also worth
mentioning is the fact that the mapping is shown in only one direction

Low -Thrust

Trajectory 6,, Cz' P2

0 W C » P 4
Fig. 2 Illustration of multiple Poincaré sections P;, computed at
different energies, intersecting the trajectory. Each Poincaré section is
computed at the instantaneous energy of the trajectory. Multiple
Poincaré sections at different locations are required.

in Fig. 3. It is possible to either map the instantaneous state on the
trajectory back in time to the surface of section, or it could also be
mapped forward in time until it intersected the surface of section once
again. The intersections would typically not be the same unless the
instantaneous point lies on a periodic orbit. The change in the inter-
sections in this case represents the natural evolution of a ballistic
trajectory under the dynamics of the system from one intersection to
the next. Both intersections contain potentially useful information,
and the use of both will be explored here.

This second method was chosen for this study because it elimi-
nates the spatial variations in the invariant manifolds and allows a
comparison of the changes in the dynamical structures as a function
of energy alone. It must be remembered that the points in this method
still cannot be compared directly. They must be compared relative to
the changing invariant manifolds at each energy level. These
techniques will be further developed and applied to an optimized
low-thrust trajectory in the Jovian system next.

Planar Ganymede to Europa Trajectory

This analysis focuses on a nearly planar low-thrust trajectory
(developed by Lam [22] using Mystic) which travels from near
Ganymede to Europa in the Jupiter—Europa CRTBP. This trajectory
was optimized primarily with the goal of minimizing the expended
propellant, but the initial reference trajectory that the initial
conditions were taken from also incorporated a number of mission
design constraints. For more details on the initial reference trajectory
see Whiffen and Lam [12]. Although the trajectory was developed
within the Jupiter—Europa system, it is expected that the results

Mapping to the
Surface of
Section (without thrust)

Low -Thrust
Trajectory

Fig. 3 Illustration of Poincaré sections computed at the same location
for different energies. Each instantaneous point on the trajectory is
mapped to the surface of section. The intersections are not at the same
point as the low-thrust trajectory because the mapping is achieved via
integration where the thrust is not included.
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Fig. 4 Planar low-thrust trajectory traveling from near Ganymede to Europa.

presented in this study will be generally applicable to missions
designed within the context of other systems in the three-body
problem. The Mystic software itself implemented the static/dynamic
optimal control algorithm, which is a nonlinear optimal control
method used to optimize static and dynamic variables at the same
time. More information on both Mystic and the underlying algo-
rithms may be found by referring to Whiffen [1,3]. The trajectory
analyzed in this study is shown in both the inertial and rotating frames
in Fig. 4. As mentioned previously, the convergence process in
Mystic did not allow the trajectory to remain completely planar, but
the maximum deviation from the plane was only 7.4 km or 1.1 x
107> dimensionless distance units. This was judged to be sufficiently
planar so that the previously developed techniques based on using
Poincaré sections in the planar CRTBP should still be adequate for
this analysis [5—7]. Examining the trajectory in the inertial frame
indicates the possible presence of three distinct periods or reso-
nances. The variation in the number of loops on the trajectory in the
rotating frame also confirms that the trajectory is traveling through at
least two resonances. This observation is not as clear as in the case of
the impulsive PEO trajectory analyzed previously [3,6], as the energy
is changing continuously along multiple sections of the trajectory
rather than just at two points. Finally, the trajectory as it approaches
Europa appears to possess the characteristics of a distant retrograde
orbit (DRO). See Lam and Whiffen [23] for a detailed study of DROs
in the Jupiter—Europa system, but they may briefly be described as
stable, periodic orbits traveling in a retrograde motion about Europa
in the rotating frame.

The effect of low thrust on the characteristics of the trajectory may
be quantified using both two-body and three-body parameters. The
shaded regions in Fig. 5 indicate the times when multiple extended
periods of thrusting occurred. During these times, the thrust was
almost always at approximately 2500 mN. Even during the regions
that appear to be gaps, thrusting on the order of 1.0 mN takes place.
Examining the Jacobi constant in Fig. 5 confirms the expectation that
the Jacobi constant undergoes its major changes during periods of
higher thrusting. The slight changes observed in the other regions are
due to the fact that some small thrust is still being applied. At first it
seems curious that, unlike the PEO, this trajectory is traveling from a
higher Jacobi constant to a lower Jacobi constant. However, it should
be noted that the low-thrust trajectory is traveling from Ganymede
which would generally have a high Jacobi constant of approximately
3.15 if it were computed in the Jupiter—Europa system. The PEO is
attempting to approach Europa from a more energetic trajectory

which would correspond to a lower Jacobi constant. The two-body
period in Fig. 5 appears to undergo some changes as a result of the
thrusting, but the variations elsewhere along the trajectory arise from
the three-body perturbations. Note that the two-body period was
computed with respect to the barycenter. These results are consistent
with those of the PEO, which saw changes in the period between AV's
as a result of flybys.

Trajectories that have been previously analyzed [8] demonstrated
a relationship with the invariant manifolds of unstable periodic
orbits, therefore, it is expected that the low-thrust trajectory may
possess a similar connection. Determining whether such a relation-
ship exists requires the computation of the invariant manifolds of the
correct unstable periodic orbits at each energy level found on the low-
thrust trajectory. The relevant unstable orbits may be unknown
initially, but, at least for resonant orbits, a guess as to the appropriate
resonance may be obtained by using the two-body periods calculated
along the trajectory.

First, however, the visualization techniques discussed earlier were
implemented along this trajectory. The first step in this method
involves the computation of the intersections with the surface of
sectionf of the instantaneous state on the low-thrust trajectory
mapped forward and backward in time. In this process, the state at
each point on the low-thrust trajectory was first selected neglecting
the z components, which were nearly zero. This state was then
mapped backward in time without thrust until it intersected the
surface of section, and this point was recorded. Next, the same state
was mapped forward in time without thrust until it intersected the
surface of section. This is illustrated for a single point on the low-
thrust trajectory in Fig. 6. Each of these points were then saved for
comparison with the invariant manifolds corresponding to the energy
of each point.

Although it is not strictly a valid comparison, these intersections
were initially plotted in Fig. 7 for comparison in a rough sense.
Examining these intersections by themselves does reveal structures
that heuristically appear to be similar to the invariant manifolds
computed for the PEO trajectory. This indicates the existence of a
possible relationship to the invariant manifolds in at least a rough
sense. To say anything more definitive, a more thorough analysis
including the various dynamical structures at each energy level must
be performed.

*Note that the surface of section used throughout this paper is at the same
location as shown in Fig. 6.
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Fig. 5 Changes in three-body and two-body parameters compared to
periods of thrusting. Gray shading indicates periods of significant thrust
which, for this time period, were almost all at approximately 2500 mN.
The dimensionless time is indicated by ¢.

Resonant Orbits

The primary dynamical structures of interest in this analysis are
unstable resonant orbits and their invariant manifolds. In our case, the
low-thrust trajectory appears to travel between different resonances,
therefore, it is natural to expect the existence of a relationship
between this trajectory and the three-body resonant orbits at these
resonances. More specifically, the relationship to the resonant orbits
possessing the same Jacobi constant is of interest. For Hamiltonian
systems, resonant orbits do not appear in isolation but in continuous
families. An initial guess for a resonant orbit at a desired resonance
may be obtained using the integration of large numbers of orbits and
Poincaré sections. Once this initial guess has been obtained, it may be
converged to a truly symmetric periodic orbit about the x axis using
standard single shooting techniques [24]. After the initial resonant
orbit has been found, the problem is then to continue the orbit to
obtain a resonant orbit at the desired energy. Although a wide variety
of continuation techniques have been developed, a simple linear
extrapolation of conditions along the x axis was found to be sufficient
for this study of resonant orbits. Once a series of orbits across a range

2 T T T T T T T
Low -Thrust Trajectory
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Fig. 7 Intersections with the surface of section of individual points on
the low-thrust trajectory integrated forward and backward in time. The
instantaneous state at each point on the trajectory was used in the
integration, which did not include any thrust. It is important to note that
the energy of each of these points is not the same, and this plot just
provides a rough comparison. Each point is computed in the same
manner as the points illustrated in Fig. 6.

of Jacobi energies have been found, a simple secant method can be
used to compute a resonant orbit at any desired energy value.

The continuation plots in Fig. § give a summary of the families of
orbits found at the 3:4 and 5:6 resonances using the techniques just
described. Each family is labeled first by the resonance. They are then
labeled according to whether they pass through the inner (I) region
between Jupiter and Europa or the outer (O) region. Finally, they are
also labeled according to whether a loop exists on the line of syzygy
(L) or not (N). Although not necessarily expected, it appears that
several different types of unstable resonant orbits may exist at each
resonance for a given energy level. In each case, the family was
continued until the linear extrapolation method failed to converge on
a trajectory in the same family. In these cases, the points on the
continuation plot typically took an abrupt turn, as can be seen in
Fig. 8b where the 5:6-NI family turns, and the family can no longer be
continued using this method. This might be a sign of a bifurcation,

0.15
01f B
Forward
Integration
0.05F Intersection ]
.o N \
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-0.05 Section
Backward
Integration
Intersection
-0.1F i
-1.6 -1.55 -15 -1.45 -1.4 -1.35 -1.3

b) Boxed region

Fig. 6 Illustration of the computation of the points in the Poincaré section for the low-thrust trajectory. The points integrated without thrust intersect

the surface of section at different points from the low-thrust trajectory.
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Fig. 8 Continuation plot for the 3:4 and 5:6 families of resonant orbits. The points represent the initial conditions on the x axis for each of the converged

orbits.

but more sophisticated techniques would be required to analyze this
phenomena which we ignore for the moment.

A selection of the converged orbits in the 3:4-LO and 5:6-LO
families are shown in Figs. 9 and 10 at even intervals of energy. These
families were found to be of the most interest for the given low-thrust
trajectory. Note that limits in the continuation are often either the
point where the family encounters Europa or where a change in the
topology of the trajectory occurs. For a more detailed analysis of all
of these families see Anderson [8].

Comparison with Invariant Manifolds

Ideally, a study of the relationship of the low-thrust trajectory to
the invariant manifolds of unstable orbits would include a
comparison in phase space of each instantaneous point on the
trajectory with the invariant manifolds computed at the energy of that
point. As mentioned previously, this approach quickly becomes

Jupiter

a) Resonant orbit family overview

cumbersome even in configuration space, making the use of Poincaré
sections desirable. These Poincaré sections were computed for each
of the desired points on the trajectory to understand how the low-
thrust trajectory moved relative to the invariant manifolds as thrust
was applied. The initial portion of the low-thrust trajectory contained
points at Jacobi constants above the range computed for the unstable
resonant orbit families. Therefore, this analysis starts approximately
14.3 days after the initial epoch on the low-thrust trajectory. The
Poincaré sections computed for each point on the low-thrust
trajectory were generally viewed as a movie, of which some of the
frames are discussed shortly.

First though, it is worth examining a single frame of the movie, as
shown in Fig. 11, to understand the relevant dynamical structures
and how they relate to the low-thrust trajectory intersections. As
explained previously, each frame corresponds to a specific Jacobi
constant computed for a particular point on the low-thrust trajectory.
This frame was computed for the point that was mapped to the

0.25f
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Fig. 9 Orbits in the 3:4-LO family. The Jacobi constant of the two bounding trajectories are labeled, and the intermediate trajectories vary linearly in

their Jacobi constant in increments of 0.003.
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Fig. 10  Orbits in the 5:6-LO family. The Jacobi constant of the two bounding trajectories are labeled, and the intermediate trajectories vary linearly in

their Jacobi constant in increments of 0.003.

surface of section and labeled as the starting point in the figure. The
resonant orbits’ intersections at the 3:4 and 5:6 resonances are plotted
as labeled for the given Jacobi constant along with the intersections
of each resonant orbit’s stable (W3,,, WZ.,) and unstable (W§,,, W&,)
manifolds. It is worth noting that this typical frame contains nearly
25,000 background points and approximately 35,000 points in the
manifolds. Depending on the frame, the integration time can range
from several minutes to a quarter hour. Generating a whole series of
frames can take several hours, but once the frames are computed for a
range of energies in a particular system there is no need to regenerate

them. For the planar problem, the complete information for each
trajectory is stored in the Poincaré section, and the data are easily
stored for analysis.

One area of interestis how these structures vary as the trajectory and
the Jacobi constant changes. Another is whether the trajectory will in
any way follow the invariant manifolds for the appropriate energy
level. To provide an initial answer to this first question, a series of
intersections was chosen and plotted in Fig. 11 where some thrusting
occurred but where the Jacobi constant was notchanging dramatically.
Over this period, the background points and intersections of the

—-0.05

045 5

"% Starting Point

u
W 56

-1.4 -1.35

2
-15

-1.45

-1.3 -1.25

-1.2 -1.15 -11 -1.05 -1

X

Fig. 11 Summary plot showing the resonant orbits and invariant manifold intersections computed at the Jacobi constant of the starting point. The black
circles indicate the intersections of the forward integrated points, and the gray circles represent the backward integrated points. All of the black and gray
points are at similar but slightly different Jacobi constants. Only the outline of the black and gray points are shown here so as not to obscure the invariant
manifolds. The areas where the points appear solid have many adjacent points.
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Fig. 12 Poincaré sections (a—t) for various points on the low-thrust trajectory. Once again, the black and gray points are the forward and backward
integrated points, respectively. The labels on the axes are removed for easier visualization, but they have the same limits as used in Fig. 11. The same colors
are also used for the resonant orbits and their invariant manifolds. The vertical lines on the Jacobi constant plot (bottom) indicate the times corresponding
to each Poincaré section which are plotted sequentially. So the frames vary in both time and Jacobi constant, and the intersection of the vertical lines with
the Jacobi constant curve gives the instantaneous Jacobi constant for each frame. A standard time interval was used to compute the invariant manifolds in
each frame, and the invariant manifolds in frames a and b do not extend as far as the other frames because of the energy level. A longer time interval would
be required to extend the invariant manifolds further at these energy levels.

dynamical structures changed only incrementally, therefore, a
comparison of the points over this time with the background points at
the energy level of one of the points is judged to be valid. The result
when the points mapped forward (black) and backward (gray) are
plotted relative to the invariant manifolds is striking. During this time
period, all of the forward intersections lie very near the unstable

manifold of the 3:4 orbit. In other words, the optimizer has chosen to
thrust in such a way that its solution follows the invariant manifold of
the 3:4 resonant orbit. The fact that the trajectory follows the exact
shape of the invariant manifold out of all potential paths indicates a
clear relationship between the optimized low-thrust trajectory and the
invariant manifolds.
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Altering the Invariant Manifold Structure by Changing C

The first frame shown in Fig. 12 starts off at the highest Jacobi
constant in this analysis.? The same convention introduced earlier
holds here where a black point represents a state on the low-thrust
trajectory integrated forward, while a gray point represents a back-
ward integration. Now, however, only the two points corresponding
to the energy level of the specified Poincaré section are plotted for
each frame.

In the first frame, the point obtained from the backward integration
is not visible as it is to the left of the plot, but the forward integration
gives a point somewhat distant from the invariant manifolds. It is
suspected that it might lie close to the invariant manifold of another
unstable resonant orbit that was simply not computed for this study.
As time progresses though, the stable invariant manifold of the 3:4
resonant orbit appears to approach the forward integration inter-
section as it also moves slightly. In frame g, as the point integrated
backward comes closer to the stable manifold of the 3:4 resonant
orbit, the forward integrated point is found to lie nearer the 3:4
resonant orbit close to its unstable manifold. This observation makes
sense, as it would be expected that points close to the stable manifold
of an unstable orbit would come closer to that orbit over time. The
relationship with the stable manifold is even more clearly seen in
frame h where the thrust has modified the trajectory so that the
backward integration appears to lie on the stable manifold of the 3:4
orbit. The nextintersection then lies nearly on top of the 3:4 orbit, just
as the stable manifold would behave. Overall it is also interesting to
observe the changes in the invariant manifolds of the resonant orbits
over the range of Jacobi constants in the frames in Fig. 12. The
invariant manifolds move from having relatively few intersections
with themselves in frame a to possessing the large number of
intersections at many resonances seen in frame /. The optimization
algorithm appears to be using low thrust both to move the intersection
of the trajectory around the Poincaré section as well as to move to
different energies where the invariant manifolds are located in
positions that may be used by the trajectory.

Following the Invariant Manifolds at Nearly Constant C

In frames i through n of Fig. 12, the series of plots begins with
the backward integrated point located near the previous location of
the forward integrated point. This switch often occurs when the
trajectory passes through the surface of section. The forward
integrated point now lies nearly on the unstable manifold of the 3:4
orbit. This makes sense, as the backward integrated point actually
lies just off the 3:4 orbit on its unstable manifold, and the next
intersection is naturally further away from the 3:4 orbit on the
unstable manifold. As time continues, the thrust is used to move the
backward integrated point slightly toward the stable manifold of
the 5:6 orbit. As this is done, the forward integrated point moves
backward along the unstable manifold of the 3:4 orbit in the
Poincaré section. It then continues to generally follow the unstable
manifold of the 3:4 orbit which lies very near the unstable manifold
of the 5:6 orbit. These frames correspond to the series of points
shown earlier in Fig. 11. Remember that it is the optimization
algorithm that has selected this path for the trajectory, and it is very
interesting that nearly all the points in the sequence lie very near
the unstable manifold. It indicates that the optimization algorithm
has converged on the invariant manifolds as optimum pathways
between resonances.

Resonance Transition

Frames o through 7 of Fig. 12 continue the sequence starting at the
next major thrusting period. The first five frames at the beginning of
this thrusting period reveal significant changes in the location of the
forward integrated point as it appears to move from the 3:4 resonance
in the previous sequence of plots to the 5:6 resonance along the
unstable manifolds of the 3:4 and 5:6 orbits. Through this process,

$Note that the same color convention used in Fig. 11 applies to all of the
Poincaré sections. The labels are typically not shown so that the manifolds are
not obscured.

the backward integrated point moves slightly along the stable
manifold of the 5:6 orbit as it begins to approach the 5:6 orbit. As
before, it is not unexpected that the fact that the backward integrated
point lies near the stable manifold of the 5:6 orbit would produce a
forward integrated point that is then closer to the general vicinity of
the 5:6 orbit. The fact that the forward integrated point lies near the
unstable manifolds of both the resonant orbits is curious. Integrating
the point on the stable manifold of the 5:6 orbit closest to the
backward integrated point shows that the next intersection of the
stable manifold is nearly on top of the 5:6 orbit. So the slight
difference in initial conditions between the stable manifold of the 5:6
orbit and the backward integrated point results in a large difference in
the location of the next intersection. Overall, this sequence of plots
aids in revealing the method by which the optimization scheme has
used low thrust to perform a resonance transition. In frame ¢, the
backward integrated point continues to move along the stable
manifold of the 5:6 orbit, and the forward integrated point moves past
the 5:6 resonance. Beyond this time period, the trajectory begins the
approach phase at Europa using a DRO. Further analysis at this point
requires the selection of a new surface of section, because the current
surface of section is on the opposite side of Jupiter from the DRO.

Conclusions

This study has revealed the close link between an optimized low-
thrust trajectory transitioning across resonances and the invariant
manifolds of unstable resonant orbits. The link was discovered by
observing that the intersections of the trajectory in the Poincaré
sections closely followed the invariant manifolds of the resonant
orbits, despite the fact that the optimization algorithm had no
knowledge of the existence of the invariant manifolds. This relation-
ship was found to persist across energy levels and over thrusting
periods, which indicates the two primary ways in which the opti-
mization algorithm manipulated the trajectory. In one case, the
algorithm modified the energy of the trajectory through thrusting to a
level where the invariant manifolds were more suitably placed to
allow resonance transitions. At other times, the thrusting was
primarily used to move the trajectory along the invariant manifolds
toward the desired resonance. These results indicate that resonant
orbits and their invariant manifolds may be fundamentally important
for understanding the optimal pathways that may be used by low-
thrust trajectories. Knowledge of this relationship has the potential to
be very useful in developing initial guesses for these optimization
algorithms, and ultimately it should aid in developing control laws
for new optimization algorithms that could find pathways for low-
thrust trajectories using invariant manifolds.
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